3.3.30 \(\int \frac {x^{11}}{(8 c-d x^3) \sqrt {c+d x^3}} \, dx\)

Optimal. Leaf size=90 \[ \frac {1024 c^{5/2} \tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{3 \sqrt {c}}\right )}{9 d^4}-\frac {38 c^2 \sqrt {c+d x^3}}{d^4}-\frac {4 c \left (c+d x^3\right )^{3/2}}{3 d^4}-\frac {2 \left (c+d x^3\right )^{5/2}}{15 d^4} \]

________________________________________________________________________________________

Rubi [A]  time = 0.08, antiderivative size = 90, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.148, Rules used = {446, 88, 63, 206} \begin {gather*} -\frac {38 c^2 \sqrt {c+d x^3}}{d^4}+\frac {1024 c^{5/2} \tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{3 \sqrt {c}}\right )}{9 d^4}-\frac {4 c \left (c+d x^3\right )^{3/2}}{3 d^4}-\frac {2 \left (c+d x^3\right )^{5/2}}{15 d^4} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^11/((8*c - d*x^3)*Sqrt[c + d*x^3]),x]

[Out]

(-38*c^2*Sqrt[c + d*x^3])/d^4 - (4*c*(c + d*x^3)^(3/2))/(3*d^4) - (2*(c + d*x^3)^(5/2))/(15*d^4) + (1024*c^(5/
2)*ArcTanh[Sqrt[c + d*x^3]/(3*Sqrt[c])])/(9*d^4)

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 88

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandI
ntegrand[(a + b*x)^m*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && IntegersQ[m, n] &&
(IntegerQ[p] || (GtQ[m, 0] && GeQ[n, -1]))

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps

\begin {align*} \int \frac {x^{11}}{\left (8 c-d x^3\right ) \sqrt {c+d x^3}} \, dx &=\frac {1}{3} \operatorname {Subst}\left (\int \frac {x^3}{(8 c-d x) \sqrt {c+d x}} \, dx,x,x^3\right )\\ &=\frac {1}{3} \operatorname {Subst}\left (\int \left (-\frac {57 c^2}{d^3 \sqrt {c+d x}}+\frac {512 c^3}{d^3 (8 c-d x) \sqrt {c+d x}}-\frac {6 c \sqrt {c+d x}}{d^3}-\frac {(c+d x)^{3/2}}{d^3}\right ) \, dx,x,x^3\right )\\ &=-\frac {38 c^2 \sqrt {c+d x^3}}{d^4}-\frac {4 c \left (c+d x^3\right )^{3/2}}{3 d^4}-\frac {2 \left (c+d x^3\right )^{5/2}}{15 d^4}+\frac {\left (512 c^3\right ) \operatorname {Subst}\left (\int \frac {1}{(8 c-d x) \sqrt {c+d x}} \, dx,x,x^3\right )}{3 d^3}\\ &=-\frac {38 c^2 \sqrt {c+d x^3}}{d^4}-\frac {4 c \left (c+d x^3\right )^{3/2}}{3 d^4}-\frac {2 \left (c+d x^3\right )^{5/2}}{15 d^4}+\frac {\left (1024 c^3\right ) \operatorname {Subst}\left (\int \frac {1}{9 c-x^2} \, dx,x,\sqrt {c+d x^3}\right )}{3 d^4}\\ &=-\frac {38 c^2 \sqrt {c+d x^3}}{d^4}-\frac {4 c \left (c+d x^3\right )^{3/2}}{3 d^4}-\frac {2 \left (c+d x^3\right )^{5/2}}{15 d^4}+\frac {1024 c^{5/2} \tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{3 \sqrt {c}}\right )}{9 d^4}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.11, size = 69, normalized size = 0.77 \begin {gather*} \frac {5120 c^{5/2} \tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{3 \sqrt {c}}\right )-6 \sqrt {c+d x^3} \left (296 c^2+12 c d x^3+d^2 x^6\right )}{45 d^4} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^11/((8*c - d*x^3)*Sqrt[c + d*x^3]),x]

[Out]

(-6*Sqrt[c + d*x^3]*(296*c^2 + 12*c*d*x^3 + d^2*x^6) + 5120*c^(5/2)*ArcTanh[Sqrt[c + d*x^3]/(3*Sqrt[c])])/(45*
d^4)

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.06, size = 72, normalized size = 0.80 \begin {gather*} \frac {1024 c^{5/2} \tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{3 \sqrt {c}}\right )}{9 d^4}-\frac {2 \sqrt {c+d x^3} \left (296 c^2+12 c d x^3+d^2 x^6\right )}{15 d^4} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[x^11/((8*c - d*x^3)*Sqrt[c + d*x^3]),x]

[Out]

(-2*Sqrt[c + d*x^3]*(296*c^2 + 12*c*d*x^3 + d^2*x^6))/(15*d^4) + (1024*c^(5/2)*ArcTanh[Sqrt[c + d*x^3]/(3*Sqrt
[c])])/(9*d^4)

________________________________________________________________________________________

fricas [A]  time = 0.92, size = 146, normalized size = 1.62 \begin {gather*} \left [\frac {2 \, {\left (1280 \, c^{\frac {5}{2}} \log \left (\frac {d x^{3} + 6 \, \sqrt {d x^{3} + c} \sqrt {c} + 10 \, c}{d x^{3} - 8 \, c}\right ) - 3 \, {\left (d^{2} x^{6} + 12 \, c d x^{3} + 296 \, c^{2}\right )} \sqrt {d x^{3} + c}\right )}}{45 \, d^{4}}, -\frac {2 \, {\left (2560 \, \sqrt {-c} c^{2} \arctan \left (\frac {\sqrt {d x^{3} + c} \sqrt {-c}}{3 \, c}\right ) + 3 \, {\left (d^{2} x^{6} + 12 \, c d x^{3} + 296 \, c^{2}\right )} \sqrt {d x^{3} + c}\right )}}{45 \, d^{4}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^11/(-d*x^3+8*c)/(d*x^3+c)^(1/2),x, algorithm="fricas")

[Out]

[2/45*(1280*c^(5/2)*log((d*x^3 + 6*sqrt(d*x^3 + c)*sqrt(c) + 10*c)/(d*x^3 - 8*c)) - 3*(d^2*x^6 + 12*c*d*x^3 +
296*c^2)*sqrt(d*x^3 + c))/d^4, -2/45*(2560*sqrt(-c)*c^2*arctan(1/3*sqrt(d*x^3 + c)*sqrt(-c)/c) + 3*(d^2*x^6 +
12*c*d*x^3 + 296*c^2)*sqrt(d*x^3 + c))/d^4]

________________________________________________________________________________________

giac [A]  time = 0.16, size = 82, normalized size = 0.91 \begin {gather*} -\frac {1024 \, c^{3} \arctan \left (\frac {\sqrt {d x^{3} + c}}{3 \, \sqrt {-c}}\right )}{9 \, \sqrt {-c} d^{4}} - \frac {2 \, {\left ({\left (d x^{3} + c\right )}^{\frac {5}{2}} d^{16} + 10 \, {\left (d x^{3} + c\right )}^{\frac {3}{2}} c d^{16} + 285 \, \sqrt {d x^{3} + c} c^{2} d^{16}\right )}}{15 \, d^{20}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^11/(-d*x^3+8*c)/(d*x^3+c)^(1/2),x, algorithm="giac")

[Out]

-1024/9*c^3*arctan(1/3*sqrt(d*x^3 + c)/sqrt(-c))/(sqrt(-c)*d^4) - 2/15*((d*x^3 + c)^(5/2)*d^16 + 10*(d*x^3 + c
)^(3/2)*c*d^16 + 285*sqrt(d*x^3 + c)*c^2*d^16)/d^20

________________________________________________________________________________________

maple [C]  time = 0.28, size = 528, normalized size = 5.87 \begin {gather*} -\frac {8 \left (\frac {2 \sqrt {d \,x^{3}+c}\, x^{3}}{9 d}-\frac {4 \sqrt {d \,x^{3}+c}\, c}{9 d^{2}}\right ) c}{d^{2}}-\frac {\frac {2 \sqrt {d \,x^{3}+c}\, x^{6}}{15 d}-\frac {8 \sqrt {d \,x^{3}+c}\, c \,x^{3}}{45 d^{2}}+\frac {16 \sqrt {d \,x^{3}+c}\, c^{2}}{45 d^{3}}}{d}-\frac {128 \sqrt {d \,x^{3}+c}\, c^{2}}{3 d^{4}}-\frac {512 i c^{2} \left (-c \,d^{2}\right )^{\frac {1}{3}} \sqrt {\frac {i \left (2 x +\frac {-i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}+\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right ) d}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {\left (x -\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right ) d}{-3 \left (-c \,d^{2}\right )^{\frac {1}{3}}+i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \sqrt {-\frac {i \left (2 x +\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}+\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right ) d}{2 \left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \left (2 \RootOf \left (d \,\textit {\_Z}^{3}-8 c \right )^{2} d^{2}+i \left (-c \,d^{2}\right )^{\frac {1}{3}} \sqrt {3}\, \RootOf \left (d \,\textit {\_Z}^{3}-8 c \right ) d -\left (-c \,d^{2}\right )^{\frac {1}{3}} \RootOf \left (d \,\textit {\_Z}^{3}-8 c \right ) d -i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {2}{3}}-\left (-c \,d^{2}\right )^{\frac {2}{3}}\right ) \EllipticPi \left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}-\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right ) \sqrt {3}\, d}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}}{3}, -\frac {2 i \left (-c \,d^{2}\right )^{\frac {1}{3}} \sqrt {3}\, \RootOf \left (d \,\textit {\_Z}^{3}-8 c \right )^{2} d +i \sqrt {3}\, c d -3 c d -i \left (-c \,d^{2}\right )^{\frac {2}{3}} \sqrt {3}\, \RootOf \left (d \,\textit {\_Z}^{3}-8 c \right )-3 \left (-c \,d^{2}\right )^{\frac {2}{3}} \RootOf \left (d \,\textit {\_Z}^{3}-8 c \right )}{18 c d}, \sqrt {\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{\left (-\frac {3 \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}+\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right ) d}}\right )}{27 d^{6} \sqrt {d \,x^{3}+c}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^11/(-d*x^3+8*c)/(d*x^3+c)^(1/2),x)

[Out]

-1/d*(2/15/d*x^6*(d*x^3+c)^(1/2)-8/45*c/d^2*x^3*(d*x^3+c)^(1/2)+16/45*c^2*(d*x^3+c)^(1/2)/d^3)-8*c/d^2*(2/9*(d
*x^3+c)^(1/2)/d*x^3-4/9*(d*x^3+c)^(1/2)*c/d^2)-128/3*c^2*(d*x^3+c)^(1/2)/d^4-512/27*I*c^2/d^6*2^(1/2)*sum((-c*
d^2)^(1/3)*(1/2*I*(2*x+(-I*3^(1/2)*(-c*d^2)^(1/3)+(-c*d^2)^(1/3))/d)/(-c*d^2)^(1/3)*d)^(1/2)*((x-(-c*d^2)^(1/3
)/d)/(-3*(-c*d^2)^(1/3)+I*3^(1/2)*(-c*d^2)^(1/3))*d)^(1/2)*(-1/2*I*(2*x+(I*3^(1/2)*(-c*d^2)^(1/3)+(-c*d^2)^(1/
3))/d)/(-c*d^2)^(1/3)*d)^(1/2)/(d*x^3+c)^(1/2)*(2*_alpha^2*d^2+I*(-c*d^2)^(1/3)*3^(1/2)*_alpha*d-(-c*d^2)^(1/3
)*_alpha*d-I*3^(1/2)*(-c*d^2)^(2/3)-(-c*d^2)^(2/3))*EllipticPi(1/3*3^(1/2)*(I*(x+1/2*(-c*d^2)^(1/3)/d-1/2*I*3^
(1/2)*(-c*d^2)^(1/3)/d)*3^(1/2)/(-c*d^2)^(1/3)*d)^(1/2),-1/18*(2*I*(-c*d^2)^(1/3)*3^(1/2)*_alpha^2*d+I*3^(1/2)
*c*d-3*c*d-I*(-c*d^2)^(2/3)*3^(1/2)*_alpha-3*(-c*d^2)^(2/3)*_alpha)/c/d,(I*3^(1/2)*(-c*d^2)^(1/3)/(-3/2*(-c*d^
2)^(1/3)/d+1/2*I*3^(1/2)*(-c*d^2)^(1/3)/d)/d)^(1/2)),_alpha=RootOf(_Z^3*d-8*c))

________________________________________________________________________________________

maxima [A]  time = 1.26, size = 82, normalized size = 0.91 \begin {gather*} -\frac {2 \, {\left (1280 \, c^{\frac {5}{2}} \log \left (\frac {\sqrt {d x^{3} + c} - 3 \, \sqrt {c}}{\sqrt {d x^{3} + c} + 3 \, \sqrt {c}}\right ) + 3 \, {\left (d x^{3} + c\right )}^{\frac {5}{2}} + 30 \, {\left (d x^{3} + c\right )}^{\frac {3}{2}} c + 855 \, \sqrt {d x^{3} + c} c^{2}\right )}}{45 \, d^{4}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^11/(-d*x^3+8*c)/(d*x^3+c)^(1/2),x, algorithm="maxima")

[Out]

-2/45*(1280*c^(5/2)*log((sqrt(d*x^3 + c) - 3*sqrt(c))/(sqrt(d*x^3 + c) + 3*sqrt(c))) + 3*(d*x^3 + c)^(5/2) + 3
0*(d*x^3 + c)^(3/2)*c + 855*sqrt(d*x^3 + c)*c^2)/d^4

________________________________________________________________________________________

mupad [B]  time = 3.22, size = 98, normalized size = 1.09 \begin {gather*} \frac {512\,c^{5/2}\,\ln \left (\frac {10\,c+d\,x^3+6\,\sqrt {c}\,\sqrt {d\,x^3+c}}{8\,c-d\,x^3}\right )}{9\,d^4}-\frac {592\,c^2\,\sqrt {d\,x^3+c}}{15\,d^4}-\frac {2\,x^6\,\sqrt {d\,x^3+c}}{15\,d^2}-\frac {8\,c\,x^3\,\sqrt {d\,x^3+c}}{5\,d^3} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^11/((c + d*x^3)^(1/2)*(8*c - d*x^3)),x)

[Out]

(512*c^(5/2)*log((10*c + d*x^3 + 6*c^(1/2)*(c + d*x^3)^(1/2))/(8*c - d*x^3)))/(9*d^4) - (592*c^2*(c + d*x^3)^(
1/2))/(15*d^4) - (2*x^6*(c + d*x^3)^(1/2))/(15*d^2) - (8*c*x^3*(c + d*x^3)^(1/2))/(5*d^3)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} - \int \frac {x^{11}}{- 8 c \sqrt {c + d x^{3}} + d x^{3} \sqrt {c + d x^{3}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**11/(-d*x**3+8*c)/(d*x**3+c)**(1/2),x)

[Out]

-Integral(x**11/(-8*c*sqrt(c + d*x**3) + d*x**3*sqrt(c + d*x**3)), x)

________________________________________________________________________________________